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We present  an approximate calculation for the pa ramete r s  of the flow field behind a conic 
shock wave in the presence  of injection perpendicular  to the surface of a cone and with 
hypersonic flow in the external  s t ream.  

Aroes ty  and Davis [1] give an exact solution for the equation of motion for a nonviscous gas, with 
provision made for the effect of surface mass  t ransfer .  The problem is considered for the symmet r i c  
supersonic s t reaml in ing  of a cone of infinite length, under the condition of injection perpendicular  to the 
surface,  a constant wall t empera ture ,  and a uniform flow rate for the injected gas. The cited solution 
reduces  to the determinat ion of the surface separat ing the external  potential flow, pass ing through the 
shock wave, f rom the internal potential flow of the injected gas. 

This ar t ic le  demonst ra tes  how to obtain the relat ionship between the angle of inclination for the com- 
press ion shock and the geometry  of the cone f rom the solution given in [1] for an external  flow at hyper-  
sonic velocit ies,  how to determine the detachment of the shock from the apex of the cone, and also how to 
make provision for the effect of mass  t r ans fe r  on the coefficient of flow rate and surface drag for the ex- 
ternal  flow. 

The boundary separat ing the external  f rom the internal potential flow (Fig. 1) is determined [1] by the 
relat ionship 

In l + ~ s  + 21~------A--s = l n  1+1~c 2 ,  (1) 
1 - -  tts 1 - -  ~ 1 - -  ~c Bc 

where ~ = cos 0. 

With a se r ies  expansion in cos 0 s in (1) and neglecting t e rms  of fifth and higher o rders ,  we find 

4 3 _ A ~  + A = 0 ,  (2) --~ Its - -  4~s 

where 

u_ 

Fig. 1. Diagram showing the s t r e a m -  
lining of a cone by a supersonic flow 
of gas and with injection normal  to the 
wall surface.  

A = l n  1 -~- Itc 2 
1 - -  Itc ~c  

One of the roots  of Eq. (2) 0 c > 0 y i e l d s # s  > 1; for 0c > 0 t h e  
second root  yields Ps > 11 I, and we therefore  drop these two 
roots ,  as physically nonreal.  Finally, we have 

1 

cos 60 ~  1 0 s = cos'l 2 w- ~ cos "~ ;(16 -~ A~) 3/2 " (3) 

In compar ison with the exact  equation (1) this express ion yields 
an e r r o r  of no more  than 1.5% in the calculation of 0 s. I tshould 
be noted that the numerica l  integration of the equation of motion 
that was per formed in [1, 2] for various values of the cone an- 
gles and various Maeh numbers of subsonic inject iondemonstra ted 
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the weak  s e n s i t i v i t y  of the angle  0 with r e s p e c t  to the e f fec t  of c o m p r e s s i b i l i t y  in the in t e rna l  f low 
zone. 

Let us apply the approximate expression (3) to the problem of subsonic injection into a hypersonic 
flowo Let us examine the hypersonic flow in an internal layer of constant density. Since it is agreed that 
the flow is axisyl~netric and isentropic, it is easy to derive the following from the expression for the velo- 
city potential [3] and for the boundary condition du/dO = v = 0 at the separation surface: 

8 = ~ (~ - ~g) in (~_ ~oI0 + ~) ~o 1 - ~ " I - - 8  

C o r r e s p o n d i n g l y ,  f o r  the p r e s s u r e  g r ad i en t  in the  e x t e r n a l  f low zone we find 

d~ e ( l - - ~ )  ( 1 -  i~c)(1 +~xe) ~x c I--~ 
Since 

Q(~) = l l n  I + p. + ~ ,  
2 I - -  ~ i - - ~ "  

the d i f f e r e n c e  Q(~s)-Q(#f i )  f o r  a thin l a y e r  of the e x t e r n a l  f low can be expanded  in a T a y l o r  s e r i e s  [n the 
v i c in i ty  of  ~3 and we c a n  ob ta in  the  fo l lowing r e su l t :  

w h e r e  

I 2  (1 + ~c)(1 - -  jxj_)) 1 
I ~  (1 - -  I~ )  In ( i  - -  I~c)(l + ~8)  ~c  

_] _ ~ ]  = 2~ + r 2 +  o ( ~ ) ,  (6) 

~ =  cos{~ s i n ( ~ - -  Os) 

sin O. s 

E x p r e s s i o n  (6) ~e rmi t s  us to s a t i s f y  condi t ion (4) by m e a n s  of the a p p r o x i m a t e  equat ion  

i 

0.5e -- cos~sin ~ - -a rccos  ( 1 6 + A  S) 2.cos 60 ~ 
1 - -  0.58 2 

1 arccos A2)a/2. 
+ 3 (16 + 

X 1 - -  .4 (16 + A~) T A 3 cos 60 ~ I 4 2 +-~- arccos (16 + A~) 8/2 " " (7) 

When the condi t ions  in the oncoming  s t r e a m  a r e  spec i f i ed  and ~ is def ined as  a function of fl and Moo, Eq. 
(7) e s t a b l i s h e s  an i m p l i c i t  r e l a t i o n s h i p  be tween  the s e m i v e r t e x  angle  of the c o m p r e s s i o n  shock  and the s e m i -  
v e r t e x  angle  of the cone.  

Le t  us use the r e s u l t s  f r o m  the a n a l y s i s  in [4] of the independence  f r o m  ~ of the coe f f i c i en t  fo r  the 
p r e s s u r e  behind the conic  shock  wave  for  ou r  c a s e  of the s t r e a m l i n i n g  of the cone.  F r o m  Eqs .  (3) and (7) 
we will  then  obta in  an a tmly t i ca l  e x p r e s s i o n  fo r  the angle  of shock  inc l ina t ion  as  a funct ion of 0 c in exp l i t  
f o r m :  

sin2[~ - M 1..~L + 0.038 lO-larccos In 1 Vtc 2~tc - - v / /  4 In 
4 1 - -  ~:c 

( 1  l+c 2 3 )]t187 •  60 ~  - -a rccos  1 - - # c  ~ c ]  (8) 
[ ( 1-[-~tc 2)2] 3/2 

3 1 6 +  In l - - ~ t c  ~tc _ 
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Equat ion (8) makes  it poss ib le  substant ia l ly  to s impl i fy  the calculat ion of the f low-field p a r a m e t e r s  behind 
the conic shock wave in the p re sence  of injection perpendicu la r  to the cone sur face .  

F r o m  the approx imate  re la t ionship  

I 1 k - - I  P--os=tgl3 (k+m)fM~ + ( ~ ]  
and f rom (5) and (8) we define the p r e s s u r e  at the separa t ion  su r face  in the fo rm 

P0s = P~U~ [ 2(k + 1)ML 4(k + 1) +P|  (9) 

where f = sin2fi is found f rom (8). 

We will a lso  show the re la t ionship  which de t e rmines  the de tachment  of the c o m p r e s s o r  shock f rom 
the apex of the cone. With r e g a r d  to hypersonic  flow in the case  of a constant  densi ty  in the externa l  l aye r  
and with subsonic no rma l  injection, we have 

where  

1 k --- 1 ] - ~  
tgl3 = [ (k + 1)fM~ -5 2 ~ - - 1 ) ]  *01), (10) 

(n) = 2 n  , ( 1 1 )  

1 _+ V1 _4~12 

[ 1 k ~ l  ] 0 . 5 [  1 k ~ l  ] - '  
n =  (k + 1)fM~ -5 2 (k-5 1)] 1 (k + 1)fM~ 2(k + 1)] 

I 

• tg arccos cos 60 ~ 1 4 2 , + --~ arccos (16 -5 A2) a/2 " 
(12) 

The plus sign in (11) co r r e sponds  to a solution with a weak shock, while the minus sign co r re sponds  
to a solution with a s t rong  shock. A solution with an at tached shock is poss ib le  up to the m a x i m u m  value 
for the cone angle, which is de te rmined  for  r = 1. The re fo re ,  

I 

4 2 3 (16 + A~) a/~ det 

111 , , = 2  (~ + 1)fM5 2 ~ i )  (k -5 1)fM~ + ( k +  1)2J " (13) 

The cone angle co r respond ing  to the de tachment  of the shock for  a known value of Moo, with this equation is 
found through a t r ia l  and e r r o r  p rocedure .  

Approximat ion of a flow with constant  densi ty  in the l a y e r  of the ex te rna l  flow behind the shock wave 
yields  the following value for  the flow ra te  and the p r e s s u r e  over  the s t r e a m  sur face  of the conic flow [5]: 

R~ ci -5 ce In I + ~ -5 __ Ixe 1 - -  Ix 1 o., (14) 

1 - -  Ix 1 - -1~ ~ 13 

c~ X = cosu -5 cg ln14- 1 - 5 ~  1 -5 2 '  
2 p~U~F ~ ct 2 1- - Ix  1 - - tx  ~ o - -  

where  
F = ~R~, 

, c i + c  z l n l - s P ' +  1 
c t = O + a r c t g  " 1--Ix ~ o , 

qIxo + c2 (-~- In 1 + ~  1) 
1--Ix  o 

is a d imens ion less  coeff icient  of the p r e s s u r e  on the conic sur face  whose s e m i v e r t e x  angle is 0; c 1 and 
c 2 a re  constants  de te rmined  f rom the conditions at the shock. 
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Fig.  2. The r e s i s t a n c e  fac-  
t o r  c x fo r  the flow s u r f a c e  as  
a funct ion of the f l ow- ra t e  
q~ and as  a funct ion of the 
f l o w - r a t e  f ac to r  and the flow- 
ra te  f ac to r  ~ in the ex te rna l  
flow zone as a function of the 
angle 0. 

F o r  the p r o b l e m  of h y p e r s o n i c  s t r e a m l i n i n g  of a cone with in jec t ion,  we have 
1 1 1 

c t =  ( k + i ) f M ~  + ~  + 1 - -  In l + ( 1 - - f ) - ~  + ( l - - f ) Y  k§ 1 f 
1 - ( 1  - f ) ~  

1 

k + l \  ~M? " r  ~ ]  

P-2 -- k+12f 1 - -  1 + ( l - - f ) ( a r c s i n v ~ ' - - 0 ) ( a r c s i n ~ / T + 0 - - 2 0 K )  k - - ~  + ( k + ~ - / M ~  (18) 

The va lues  of 0 and 0 s An (18) a r e  taken in r ad ians .  

As an example ,  we have ca lcu la ted  the coef f ic ien t s  c x and q~ in the flow for  the s u p e r s o n i c  s t r e a m -  
l in ing of a c i r c u l a r  cone and for  the ease  of n o r m a l  in jec t ion  th rough  the wall .  The ca lcu la t ion  was  c a r r i e d  
out with (14) and (15) for  M~o = 5.2 and 0 = 1~ '' and this  is shown by the c u r v e s  in Fig. 2. 

Coo 

0c 
0 s 

v and u 
0 and r 

e = p ~ / p f l  
k = Cp/C v . 

NOTATION 

is the velocity of the unperturbed flow; 
is the angle between the direction of the shock wave and the unperturbed flow; 
is the semivertex angle of the cone; 
is the semivertex angle of the surface separating the layer of injected gas from the external 
flow; 
a r e  the ve loc i ty  componen t s  in the d i r ec t ions  0 and r ;  
a r e  po l a r  coo rd ina t e s ;  
is the r a t io  of the dens i t i e s  in f ront  of and behind the shock  wave;  

S u b s c r i p t s  

0, /3, ~o, s,  and c c o r r e s p o n d  to the condi t ions  on the r a y  0, i m m e d i a t e l y  behind the shock  wave,  in the 
unpe r tu rbed  flow, at  the boundary  of s epa ra t ion ,  and on the cone su r f ace .  

LITERATURE C I T E D  

1. J.  A r o e s t y  and S. H. Davis ,  AIAA Journa l ,  No. 10 (1966). 
2. G. EmanueI ,  AIAA Journa l ,  No. 3 (1967). 
3. W. Hayes  and R. D. l>robstein,  The T h e o r y  of H y p e r s o n i c  Flows [Russian t r ans la t ion] ,  IL,  Moscow 

(1962). 
4. G . W .  Zumwal t  and H. H. Tang,  AIAA Journa l ,  No. 10 (1963). 
5. A . M .  Mkhi ta ryan  and M. P. Ovsyannikov ,  Izv .  Vuz.,  Av ia t s i onnaya  Tekhnika ,  No. 1 (1967). 

449 


