THE EFFECT OF INJECTION ON THE SUPERSONIC
STREAMLINING OF A CONE
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We present an approximate calculation for the parameters of the flow field behind a conic
shock wave in the presence of injection perpendicular to the surface of a cone and with
hypersonic flow in the external stream.

Aroesty and Davis [1] give an exact solution for the equation of motion for a nonviscous gas, with
provision made for the effect of surface mass transfer. The problem is considered for the symmetric
supersonic streamlining of a cone of infinite length, under the condition of injection perpendicular to the
surface, a constant wall temperature, and a uniform flow rate for the injected gas. The cited solution
reduces to the determination of the surface separating the external potential flow, passing through the
shock wave, from the internal potential flow of the injected gas.

This article demonstrates how to obtain the relationship between the angle of inclination for the com-
pression shock and the geometry of the cone from the solution given in [1] for an external flow at hyper-
sonic velocities, how to determine the detachment of the shock from the apex of the cone, and also how to
make provision for the effect of mass transfer on the coefficient of flow rate and surface drag for the ex-

ternal flow.

The boundary separating the external from the internal potential flow (Fig. 1) is determined [1] by the
relationship
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With a series expansion in cos 6g in (1) and neglecting terms of fifth and higher orders, we find
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One of the roots of Eq. (2) 6 > 0 yields pug > 1; for 6, > 0 the
second root yields ug > [1], and we therefore drop these two
roots, as physically nonreal. Finally, we have
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In comparison with the exact equation (1) this expression yields
Fig. 1. Diagram showing the stream- an error of no more than 1.5% in the calculation of 6. Itshould
lining of a cone by a supersonic flow be noted that the numerical integration of the equation of motion
of gas and with injection normal to the that was performed in [1, 2] for various values of the cone an-
wall surface. gles and various Mach numbe rs of subsonic injectiondemonstrated
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the weak sengitivity of the angle ¢ with respect to the effect of compressibility in the internal flow
zone.

Let us apply the approximate expression (3) to the problem of subsonic injection into a hypersonic
flow. Let us examine the hypersonic flow in an internal layer of constant density. Since it is agreed that
the flow is axisymmetric and isentropie, it is easy to derive the following from the expression for the velo-
city potential [3] and for the boundary condition du/d6 = v = 0 at the separation surface:
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Correspondingly, for the pressure gradient in the external flow zone we find
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the difference Q(ug) —Q(up) for a thin layer of the external flow can be expanded in a Taylor series in the
vicinity of #g and we can obtain the following result:
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Expression (6) permits us to satisfy condition (4) by means of the approximate equation
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When the conditions in the oncoming stream are specified and ¢ is defined as a function of g and M., Eq.
(7) establishes an implicit relationship between the semivertex angle of the compression shock and the semi-
vertex angle of the cone.

Let us use the results from the analysis in [4] of the independence from M, of the coefficient for the
pressure behind the conic shock wave for our case of the streamlining of the cone. From Egs. (3) and (7)

we will then obtain an analytical expression for the angle of shock inclination as a function of f, in explit
form:
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Equation (8) makes it possible substantially to simplify the calculation of the flow-field parameters behind
the conic shock wave in the presence of injection perpendicular to the cone surface.

From the approximate relationship
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and from (5) and (8) we define the pressure at the separation surface in the form
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where f = sin?g is found from (8).

We will also show the relationship which determines the detachment of the compressor shock from
the apex of the cone. With regard to hypersonic flow in the case of a constant density in the external layer
and with subsonic normal injection, we have
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The plus sign in (11) corresponds to a solution with a weak shock, while the minus sign corresponds
to a solution with a strong shock. A solution with an attached shock is possible up to the maximum value
for the cone angle, which is determined for ¥(n) = 1. Therefore,

1
A (16 4+ 4% o, 1 Ad \
g {arccos [ I — cos ( 60° + 3 arccos W) ]}det

=i{1_ 1 — k——l][ 1 4 k—~l]‘°-5. (13)
2 k+1DMe 2(R+D]L E+DMe (R +1)2

The cone angle corresponding to the detachment of the shock for a known value of M_, with this equation is
found through a trial and error procedure.

Approximation of a flow with constant density in the layer of the external flow behind the shock wave
yields the following value for the flow rate and the pressure over the stream surface of the conic flow [5]:
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p is a dimensionless coefficient of the pressure on the conic surface whose semivertex angle is 6; ¢y and
¢, are constants determined from the conditions at the shock.
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For the problem of hypersonic streamlining of a cone with injection, we have
1
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The values of 6 and 6y in (18) are taken in radians.

As an example, we have calculated the coefficients ¢y and ¢ in the flow for the supersonic stream-
lining of a circular cone and for the case of normal injection through the wall. The calculation was carried
out with (14) and (15) for M, = 5.2 and 8 = 1°8'5" and this is shown by the curves in Fig. 2.

NOTATION
U is the velocity of the unperturbed flow;
B is the angle between the direction of the shock wave and the unperturbed flow;
B¢ is the semivertex angle of the cone;
Og is the semivertex angle of the surface separating the layer of injected gas from the external
flow;
v and u are the velocity components in the directions 4 and r;
0 andr are polar coordinates;
£ = Do /pﬁ is the ratio of the densities in front of and behind the shock wave;
k= cp/cv .
Subscripts

6, B, ©, s, and ¢ correspond to the conditions on the ray 6, immediately behind the shock wave, in the
unperturbed flow, at the boundary of separation, and on the cone surface.
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